Open Dimensional Dynamical Systems
نویسنده
چکیده
The theme of this issue of Artiicial Life is that traditional Dynamical Systems theory is inadequate for many problems in the study of Complex Systems. In this paper, I argue that the nite dimensional nature of traditional dynamical systems is inappropriate for evolutionary systems, but that simply embedding the dynamics into an innnite dimensional space overly complicates the mathematics and obscures important features of the complex system. Instead, I believe a new branch of mathematics is needed, which I term open dimensional dynamical systems, systems whose dimensionality is nite at any point in time, but whose dimension varies through time.
منابع مشابه
Dynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review
The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...
متن کاملThe Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion
In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and ...
متن کاملMemory Loss for Nonequilibrium Open Dynamical Systems
We introduce a notion of conditional memory loss for nonequilibrium open dynamical systems. We prove that this type of memory loss occurs at an exponential rate for nonequilibrium open systems generated by one-dimensional piecewise-differentiable expanding Lasota-Yorke maps. This result may be viewed as a prototype for time-dependent dynamical systems with holes.
متن کاملRobust stabilization of a class of three-dimensional uncertain fractional-order non-autonomous systems
This paper concerns the problem of robust stabilization of uncertain fractional-order non-autonomous systems. In this regard, a single input active control approach is proposed for control and stabilization of three-dimensional uncertain fractional-order systems. The robust controller is designed on the basis of fractional Lyapunov stability theory. Furthermore, the effects of model uncertai...
متن کاملSensitive Dependence on Parameters of Continuous-time Nonlinear Dynamical Systems
The sensitive dependence of periodicity and chaos on parameters is investigated for three-dimensional nonlinear dynamical systems. Previous works have found that noninvertible low-dimensional maps present power-law exponents relating the uncertainty between periodicity and chaos to the precision on the system parameters. Furthermore, the values obtained for these exponents have been conjectured...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000